BDS code bias periodical mitigation by low-pass filtering and its applications in precise positioning
نویسندگان
چکیده
The code-phase divergences, which are minimal for GPS, GLONASS, and Galileo satellites, are commonly found in BeiDou Navigation Satellite System (BDS) Geostationary Orbit (GEO), Inclined GeoSynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Several precise positioning applications which use code observations are severely affected by these code biases. We present an analysis of code bias based on multipath (MP) combination observations. To mitigate the effect of BDS code bias on precise positioning, we proposed a periodical correction method using a low-pass filter for BDS GEO, IGSO and MEO satellites. The auto-correlation of MP series over long periods is analyzed to obtain the periods of the dominant repeating components for three types of BDS satellites. The periods of the dominant daily repeating components are close to 86,160 s for BDS GEO and IGSO satellites while 603,120 s for MEO satellites. The zero phase-shift low-pass filter was used to extract the low-frequency components of MP series and then low-frequency components are applied to mitigate the code bias periodically. The developed correction methods can make a more remarkable improvement for the accuracy of MP series, compared to the current elevation-dependent correction models. Data sets collected at 50 Global Navigation Satellite System (GNSS) ground stations including 15 of the International GNSS Monitoring and Assessment System (iGMAS) and 35 of the Multi-GNSS Experiment (MGEX) stations are employed for this study. To analyze the influence of code bias on precise positioning and validate the effectiveness of the correction methods, some applications such as single point positioning (SPP), wide-lane (WL) ambiguity analysis and Uncalibrated Phase Delays (UPDs) estimation are conducted. After applying the proposal correction method to the code observations, SPP solutions outperform the uncorrected ones in term of positioning accuracy. The positioning accuracy decreased by 0.28 and 0.1 m in the north and east components and the improvements are more significant for the U components decreased by 0.42 m. In addition, the systematic variations of Melbourne-Wübbena (MW) combination are greatly removed and the convergence time of the MW series are decreased. Moreover, significant improvement is also achieved in terms of the usage rate and residuals of UPDs estimation.
منابع مشابه
Characteristics of the BDS Carrier Phase Multipath and Its Mitigation Methods in Relative Positioning
The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites ar...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملGlobal Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield
Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve go...
متن کاملConsidering Inter-Frequency Clock Bias for BDS Triple-Frequency Precise Point Positioning
The joint use of multi-frequency signals brings new prospects for precise positioning and has become a trend in Global Navigation Satellite System (GNSS) development. However, a new type of inter-frequency clock bias (IFCB), namely the difference between satellite clocks computed with different ionospheric-free carrier phase combinations, was noticed. Consequently, the B1/B3 precise point posit...
متن کاملLau, Lawrence (2017) Wavelet packets based denoising method for measurement domain repeat-time multipath filtering in GPS static high-precision positioning. GPS
Repeatable satellite orbits can be used for multipath mitigation in GPS-based deformation monitoring and other high-precision GPS applications that involve continuous observation with static antennas. Multipath signals at a static station repeat when the GPS constellation repeats given the same site environment. Repeat-time multipath filtering techniques need noise reduction methods to remove t...
متن کامل